On the Existence of Almost Greedy Bases in Banach Spaces
نویسندگان
چکیده
We consider several greedy conditions for bases in Banach spaces that arise naturally in the study of the Thresholding Greedy Algorithm (TGA). In particular, we continue the study of almost greedy bases begun in [3]. We show that almost greedy bases are essentially optimal for n-term approximation when the TGA is modified to include a Chebyshev approximation. We prove that if a Banach space X has a basis and contains a complemented subspace with a symmetric basis and finite cotype then X has an almost greedy basis. We show that c0 is the only L∞ space to have a quasi-greedy basis. The Banach spaces which contain almost greedy basic sequences are characterized.
منابع مشابه
Comments on the Paper ’on the Existence of Almost Greedy Bases in Banach Spaces’ By
Greedy algorithms are widely used in image processing and other applications. Let X be a real Banach space with a semi-normalized basis (en). An algorithm for n-term approximation produces a sequence of maps Fn : X → X such that, for each x ∈ X, Fn(x) is a linear combination of at most n of the basis elements (ej). Konyagin and Temlyakov [12] introduced the Thresholding Greedy Algorithm (TGA) (...
متن کاملWeak Thresholding Greedy Algorithms in Banach Spaces
We consider weak thresholding greedy algorithms with respect to Markushevich bases in general Banach spaces. We find sufficient conditions for the equivalence of boundedness and convergence of the approximants. We also show that if there is a weak thresholding algorithm for the system which gives the best n-term approximation up to a multiplicative constant, then the system is already “greedy”....
متن کاملGreedy Bases for Besov Spaces
We prove that the Banach spaces (⊕n=1`p )`q , which are isomorphic to the Besov spaces on [0, 1], have greedy bases, whenever 1 ≤ p ≤ ∞ and 1 < q < ∞. Furthermore, the Banach spaces (⊕n=1`p )`1 , with 1 < p ≤ ∞, and (⊕n=1`p )c0 , with 1 ≤ p < ∞ do not have a greedy bases. We prove as well that the space (⊕n=1`p )`q has a 1-greedy basis if and only if 1 ≤ p = q ≤ ∞.
متن کاملOn X ̃-frames and conjugate systems in Banach spaces
The generalization of p-frame in Banach spaces is considered in this paper. The concepts of an $tilde{X}$-frame and a system conjugate to $tilde{X}$-frame were introduced. Analogues of the results on the existence of conjugate system were obtained. The stability of $tilde{X}$-frame having a conjugate system is studied.
متن کاملLebesgue-type Inequalities for Quasi-greedy Bases
We show that for quasi-greedy bases in real or complex Banach spaces the error of the thresholding greedy algorithm of order N is bounded by the best N term error of approximation times a function of N which depends on the democracy functions and the quasi-greedy constant of the basis. If the basis is democratic this function is bounded by C logN . We show with two examples that this bound is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003